Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114072

Acute effects of insulin-like growth factor I on glucose and amino acid metabolism in the awake fasted rat. Comparison with insulin.

R Jacob, E Barrett, G Plewe, K D Fagin, and R S Sherwin

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Find articles by Jacob, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Find articles by Barrett, E. in: JCI | PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Find articles by Plewe, G. in: JCI | PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Find articles by Fagin, K. in: JCI | PubMed | Google Scholar

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Find articles by Sherwin, R. in: JCI | PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1717–1723. https://doi.org/10.1172/JCI114072.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

To elucidate the acute metabolic actions of insulin-like growth factor I (IGF-I), we administered a primed (250 micrograms/kg), continuous (5 micrograms/kg.min) infusion of human recombinant (Thr 59) IGF-I or saline to awake, chronically catheterized 24-h fasted rats for 90 min. IGF-I was also infused while maintaining euglycemia (glucose clamp technique) and its effects were compared to those of insulin. IGF-I infusion caused a twofold rise in IGF-I levels and a 75-85% decrease in plasma insulin. When IGF-I alone was given, plasma glucose fell by 30-40 mg/dl (P less than 0.005) due to a transient twofold increase (P less than 0.05) in glucose uptake; hepatic glucose production and plasma FFA levels remained unchanged. IGF-I infusion with maintenance of euglycemia produced a sustained rise in glucose uptake and a marked stimulation of [3-3H]glucose incorporation into tissue glycogen, but still failed to suppress glucose production and FFA levels. IGF-I also produced a generalized 30-40% reduction in plasma amino acids, regardless of whether or not hypoglycemia was prevented. This was associated with a decrease in leucine flux and a decline in the incorporation of [1-14C]leucine into muscle and liver protein (P less than 0.05). When insulin was infused in a dosage that mimicked the rise in glucose uptake seen with IGF-I, nearly identical changes in amino acid metabolism occurred. However, insulin suppressed glucose production by 65% and FFA levels by 40% (P less than 0.001). Furthermore, insulin was less effective than IGF-I in promoting glycogen synthesis. We conclude that (a) IGF-I produces hypoglycemia by selectively enhancing glucose uptake; (b) IGF-I is relatively ineffective in suppressing hepatic glucose production or FFA levels; and (c) IGF-I, like insulin, lowers circulating amino acids by reducing protein breakdown rather than by stimulating protein synthesis. Thus, IGF-I's metabolic actions in fasted rats are readily distinguished from insulin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1717
page 1717
icon of scanned page 1718
page 1718
icon of scanned page 1719
page 1719
icon of scanned page 1720
page 1720
icon of scanned page 1721
page 1721
icon of scanned page 1722
page 1722
icon of scanned page 1723
page 1723
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts