Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114051

Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis.

L B Schwartz, J W Yunginger, J Miller, R Bokhari, and D Dull

Department of Medicine, Medical College of Virginia, Richmond 23298, USA.

Find articles by Schwartz, L. in: PubMed | Google Scholar

Department of Medicine, Medical College of Virginia, Richmond 23298, USA.

Find articles by Yunginger, J. in: PubMed | Google Scholar

Department of Medicine, Medical College of Virginia, Richmond 23298, USA.

Find articles by Miller, J. in: PubMed | Google Scholar

Department of Medicine, Medical College of Virginia, Richmond 23298, USA.

Find articles by Bokhari, R. in: PubMed | Google Scholar

Department of Medicine, Medical College of Virginia, Richmond 23298, USA.

Find articles by Dull, D. in: PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1551–1555. https://doi.org/10.1172/JCI114051.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

Tryptase, a neutral protease of human mast cells, is a potentially important indicator of mast cell involvement in various clinical conditions. The current study examined the time course of appearance and disappearance of tryptase in the circulation after an anaphylactic event and the stability of both endogenous and exogenous tryptase in terms of freeze-thawing and temperature. The peak level of tryptase after an experimentally induced systemic anaphylactic reaction occurred 1-2 h after the initiating bee sting in each of three subjects, in contrast to histamine levels which peaked at 5-10 min. In some cases elevated levels of tryptase may not be detected during the initial 15-30 min. Tryptase levels then declined under apparent first order kinetics with a t1/2 of approximately 2h. Similar disappearance kinetics were observed for two subjects presenting in the emergency room with immediate type reactions, one with severe asthma after indomethacin ingestion, the other with systemic anaphylaxis after a bee sting. Histamine levels declined rapidly and were back to baseline by 15-60 min. Measured levels of tryptase in serum or plasma were not diminished by up to four freeze-thaw cycles. Incubation of serum samples taken from subjects with elevated levels of tryptase at 22 and 37 degrees C indicated that greater than 50% of endogenous tryptase was still detected after 4 d. Purified tryptase added to serum or plasma and incubated as above was less stable: approximately 50% of exogenous tryptase in serum and approximately 15% in plasma was detected after 2d of incubation. Therefore, optimally samples should be stored frozen, but even those stored at room temperature for up to 4 d should be satisfactory. The best time to obtain samples for tryptase determinations is 1-2 h after the precipitating event, but depending on the magnitude of the initial response elevated levels of tryptase may be present in the circulation for several hours.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1551
page 1551
icon of scanned page 1552
page 1552
icon of scanned page 1553
page 1553
icon of scanned page 1554
page 1554
icon of scanned page 1555
page 1555
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts