Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114038

Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron.

T F Byrd and M A Horwitz

Department of Medicine, School of Medicine, University of California, Los Angeles 90024.

Find articles by Byrd, T. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, University of California, Los Angeles 90024.

Find articles by Horwitz, M. in: PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1457–1465. https://doi.org/10.1172/JCI114038.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

We have investigated the role of iron in the intracellular biology of Legionella pneumophila in human monocytes and in the effector arm of cell-mediated immune defense against this intracellular bacterial pathogen. To determine if L. pneumophila intracellular multiplication is iron dependent, we studied the effect of the iron chelator deferoxamine on L. pneumophila infection of monocytes. Deferoxamine at 15 microM completely inhibited L. pneumophila intracellular multiplication. The inhibitory effect of deferoxamine was reversed with equimolar iron-saturated transferrin but not apotransferrin. To examine the potential role of iron in monocyte activation, we investigated the influence of iron-saturated transferrin on L. pneumophila multiplication in IFN gamma-activated monocytes. Iron transferrin, but not apotransferrin, neutralized the capacity of activated monocytes to inhibit L. pneumophila multiplication. To explore a potential mechanism by which activated monocytes might limit the availability of intracellular iron, we examined transferrin receptor expression on nonactivated and activated monocytes cultured in vitro for 5 d. By fluorescence-activated flow cytometry, activated monocytes exhibited markedly fewer transferrin receptors than nonactivated monocytes. By Scatchard analysis of 125I-transferrin binding to monocytes, nonactivated monocytes had 38,300 +/- 12,700 (mean +/- SE) transferrin binding sites, whereas activated monocytes had 10,300 +/- 1,600, a reduction of 73%. Activated and nonactivated monocytes had a similar mean Kd (1.8 +/- 0.2 nM). This study demonstrates that (a) L. pneumophila intracellular multiplication is iron dependent; (b) activated monocytes inhibit L. pneumophila multiplication by limiting the availability of intracellular iron; and (c) transferrin receptors are downregulated on IFN gamma-activated monocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1457
page 1457
icon of scanned page 1458
page 1458
icon of scanned page 1459
page 1459
icon of scanned page 1460
page 1460
icon of scanned page 1461
page 1461
icon of scanned page 1462
page 1462
icon of scanned page 1463
page 1463
icon of scanned page 1464
page 1464
icon of scanned page 1465
page 1465
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts