Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113983

Bacterial lipopolysaccharides prime human neutrophils for enhanced production of leukotriene B4.

M E Doerfler, R L Danner, J H Shelhamer, and J E Parrillo

Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Doerfler, M. in: PubMed | Google Scholar

Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Danner, R. in: PubMed | Google Scholar

Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Shelhamer, J. in: PubMed | Google Scholar

Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Parrillo, J. in: PubMed | Google Scholar

Published March 1, 1989 - More info

Published in Volume 83, Issue 3 on March 1, 1989
J Clin Invest. 1989;83(3):970–977. https://doi.org/10.1172/JCI113983.
© 1989 The American Society for Clinical Investigation
Published March 1, 1989 - Version history
View PDF
Abstract

Neutrophils can be "primed" for an enhanced respiratory burst by lipopolysaccharide (LPS) in concentrations measurable in patients with septic shock. Leukotriene B4 (LTB4) is the primary eicosanoid product of neutrophils and is felt to be a mediator of host defense and inflammation. We investigated the in vitro effects of LPS on neutrophil production of LTB4 and the omega-oxidation metabolites of LTB4. Incubation of neutrophils with LPS in concentrations ranging from 0.01 to 100 ng/ml did not result in production of LTB4 or metabolites in the absence of a second stimulus. Priming neutrophils with LPS and then stimulating with opsonized zymosan, phorbol-myristate-acetate or a low concentration of the calcium ionophore A23187 resulted in enhanced production of LTB4. LPS priming of neutrophils occurred in a concentration dependent manner. LPS did not result in LTB4 production in response to the chemoattractant peptide FMLP. LPS priming of neutrophils had no effect on cytosolic calcium concentrations of resting or zymosan-stimulated cells. These results suggest that LPS might effect host defense and tissue injury by potentiating the effect of other stimulants on neutrophil production of LTB4. This LPS induced enhancement may represent an important pathogenetic pathway in patients with gram negative sepsis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 970
page 970
icon of scanned page 971
page 971
icon of scanned page 972
page 972
icon of scanned page 973
page 973
icon of scanned page 974
page 974
icon of scanned page 975
page 975
icon of scanned page 976
page 976
icon of scanned page 977
page 977
Version history
  • Version 1 (March 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts