Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113961

Increased fat and skeletal muscle beta-adrenergic receptors but unaltered metabolic and hemodynamic sensitivity to epinephrine in vivo in experimental human thyrotoxicosis.

S B Liggett, S D Shah, and P E Cryer

Department of Medicine, Washington University School of Medicine St. Louis, Missouri 63110.

Find articles by Liggett, S. in: PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine St. Louis, Missouri 63110.

Find articles by Shah, S. in: PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine St. Louis, Missouri 63110.

Find articles by Cryer, P. in: PubMed | Google Scholar

Published March 1, 1989 - More info

Published in Volume 83, Issue 3 on March 1, 1989
J Clin Invest. 1989;83(3):803–809. https://doi.org/10.1172/JCI113961.
© 1989 The American Society for Clinical Investigation
Published March 1, 1989 - Version history
View PDF
Abstract

Based largely on evidence of increased target tissue beta-adrenergic receptor densities and responsiveness in animal and, to a lesser extent, human tissues, it is often assumed that thyroid hormone excess results in increased sensitivity to catecholamines in vivo, thus explaining several clinical manifestations of thyrotoxicosis. To test the hypothesis that thyrotoxicosis results in increased target tissue beta-adrenergic receptor densities and correspondingly increased metabolic and hemodynamic sensitivity to epinephrine in vivo, we measured these in 10 normal humans before and after administration of triiodothyronine (100 micrograms daily) for 10 d. Thyrotoxicosis increased beta-adrenergic receptor densities in fat (approximately 60%) and skeletal muscle (approximately 30%). Despite increments in beta-adrenergic receptor densities in these and probably other target tissues, metabolic and hemodynamic sensitivity to epinephrine in vivo was unaltered. An apparently adaptive increase in insulin secretion plausibly explains normal glycemic, glycogenolytic/glycolytic, lipolytic, and ketogenic sensitivity to epinephrine in the thyrotoxic state. In view of this striking homeostatic efficiency of the intact individual, the finding of altered adrenergic receptors, even in relevant target tissues, should not be extrapolated to altered sensitivity to catecholamines in vivo in the absence of direct testing of that hypothesis. With respect to the clinical issue, these data suggest that increased sensitivity to catecholamines does not explain clinical manifestations of thyrotoxicosis in humans.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 803
page 803
icon of scanned page 804
page 804
icon of scanned page 805
page 805
icon of scanned page 806
page 806
icon of scanned page 807
page 807
icon of scanned page 808
page 808
icon of scanned page 809
page 809
Version history
  • Version 1 (March 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts