Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils.
B G Bolscher, R van Zwieten, I M Kramer, R S Weening, A J Verhoeven, D Roos
B G Bolscher, R van Zwieten, I M Kramer, R S Weening, A J Verhoeven, D Roos
View: Text | PDF
Research Article

A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils.

  • Text
  • PDF
Abstract

The NADPH:O2 oxidoreductase (NADPH oxidase) of human neutrophils is converted from a dormant to an active state upon stimulation of the cells. We have studied the soluble fraction that is required for NADPH oxidase activation in a cell-free system. Human neutrophils were separated in a membrane-containing and a soluble fraction. The soluble fraction was separated on carboxymethyl (CM) Sepharose in 10 mM 4-morpholino-ethanesulfonic acid buffer of pH 6.8. Reconstitution of the NADPH oxidase activity, measured as O2 consumption, was only found when the membrane fraction was combined with the flowthrough of the CM Sepharose column as well as with a fraction that eluted at 125 mM NaCl. This result indicates that at least two soluble components are necessary for reconstitution of the NADPH oxidase activity: one that does not bind to CM Sepharose and one that does bind. These components were designated soluble oxidase component (SOC) I and SOC II, respectively. Boiling destroyed the activity in both fractions. In the soluble fraction of human lymphocytes and thrombocytes neither SOC I nor SOC II activity was found. SOC II copurified with a 47-kD phosphoprotein, previously found defective in patients with the autosomal form of chronic granulomatous disease (CGD). Inactive soluble fractions of cells from autosomal CGD patients were reconstituted with a SOC II fraction from control cells. The result of this experiment indicates that autosomal CGD patients are normal in SOC I but defective in SOC II.

Authors

B G Bolscher, R van Zwieten, I M Kramer, R S Weening, A J Verhoeven, D Roos

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 213 7
PDF 141 1
Scanned page 237 1
Citation downloads 75 0
Totals 666 9
Total Views 675
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts