Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113948

Stretch-induced atriopeptin secretion in the isolated rat myocyte and its negative modulation by calcium.

J E Greenwald, M Apkon, K A Hruska, and P Needleman

Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Greenwald, J. in: PubMed | Google Scholar

Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Apkon, M. in: PubMed | Google Scholar

Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Hruska, K. in: PubMed | Google Scholar

Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Needleman, P. in: PubMed | Google Scholar

Published March 1, 1989 - More info

Published in Volume 83, Issue 3 on March 1, 1989
J Clin Invest. 1989;83(3):1061–1065. https://doi.org/10.1172/JCI113948.
© 1989 The American Society for Clinical Investigation
Published March 1, 1989 - Version history
View PDF
Abstract

Cellular mechanism(s) regulating atriopeptin secretion and processing by the atrial myocyte are currently unknown. Osmotic stretch of isolated atrial myocytes as well as potassium chloride depolarization were potent stimuli of atriopeptin secretion. Release was potentiated by buffering either extracellular calcium with EGTA or intracellular calcium with the intracellular chelator, BAPTA AM. Atrial release of atriopeptin was inhibited after administration of ionomycin which elevates intracellular calcium. Fetal or early neonatal ventricular myocytes actively synthesize atriopeptin. Atriopeptin secretion by ventricular myocytes was also markedly potentiated by osmotic stretch as well as KCl depolarization. Only the 126 amino acid prohormone was secreted by the stretch-stimulated atrial and ventricular myocyte. These data suggest that stretch of the myocyte plasma membrane is a major stimulus for atriopeptin secretion and that atriopeptin secretion is not stimulated by raising intracellular calcium and appears to be negatively modulated by this cation. Like the atrial myocyte, the ventricular myocyte possesses the cellular mechanism(s) necessary to secrete atriopeptin by a regulated mechanism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1061
page 1061
icon of scanned page 1062
page 1062
icon of scanned page 1063
page 1063
icon of scanned page 1064
page 1064
icon of scanned page 1065
page 1065
Version history
  • Version 1 (March 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts