The hypothesis was tested that the field of a premature (S2) stimulus, interacting with relatively refractory tissue, can create unidirectional block and reentry in the absence of nonuniform dispersion of recovery. Simultaneous recordings from a small region of normal right ventricular (RV) myocardium were made from 117 to 120 transmural or epicardial electrodes in 14 dogs. S1 pacing from a row of electrodes on one side of the mapped area generated parallel activation isochrones followed by uniform parallel isorecovery lines. Cathodal S2 shocks of 25 to 250 V lasting 3 ms were delivered from a mesh electrode along one side of the mapped area to scan the recovery period, creating isogradient electric field lines perpendicular to the isorecovery lines. Circus reentry was created following S2 stimulation; initial conduction was distant from the S2 site and spread towards more refractory tissue. Reentry was clockwise for right S1 (near the septum) with top S2 (near the pulmonary valve) and for left S1 with bottom S2; and counterclockwise for right S1 with bottom S2 and left S1 with top S2. The center of the reentrant circuit for all S2 voltages and coupling intervals occurred at potential gradients of 5.1 +/- 0.6 V/cm (mean +/- standard deviation) and at preshock intervals 1 +/- 3 ms longer than refractory periods determined locally for a 2 mA stimulus. Thus, when S2 field strengths and tissue refractoriness are uniformally dispersed at an angle to each other, circus reentry occurs around a "critical point" where an S2 field of approximately 5 V/cm intersects tissue approximately at the end of its refractory period.
D W Frazier, P D Wolf, J M Wharton, A S Tang, W M Smith, R E Ideker
Usage data is cumulative from October 2024 through October 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 288 | 8 |
53 | 12 | |
Figure | 0 | 4 |
Scanned page | 409 | 15 |
Citation downloads | 45 | 0 |
Totals | 795 | 39 |
Total Views | 834 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.