Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interleukin-1 generates transmembrane signals from phospholipids through novel pathways in cultured rat mesangial cells.
M Kester, … , P Mené, J R Sedor
M Kester, … , P Mené, J R Sedor
Published February 1, 1989
Citation Information: J Clin Invest. 1989;83(2):718-723. https://doi.org/10.1172/JCI113937.
View: Text | PDF
Research Article

Interleukin-1 generates transmembrane signals from phospholipids through novel pathways in cultured rat mesangial cells.

  • Text
  • PDF
Abstract

Although IL-1 stimulates cellular responses in both lymphoid and nonlymphoid cells, the second messengers by which IL-1 activates cells are unknown. Recombinant IL-1 alpha (rIL-1) is a comitogen for glomerular mesangial cells. Using this model we explored potential transmembrane signals by which IL-1 stimulates cellular responses. Certain mitogens hydrolyze inositol phospholipids by phospholipase C to generate 1,2-diacylglycerol, a cofactor for protein kinase C, and inositol (1,4,5)-trisphosphate, which mobilizes intracellular calcium. rIL-1 induced a peak increase in [3H]1,2-diacylglycerol formation at 1 min. Production of 1,2-diacylglycerol often parallels the generation of phosphatidic acid; however, rIL-1 stimulated [32P]phosphatidate formation only after 60 min. rIL-1 did not change the inositol phosphate or cytosolic free calcium concentrations, demonstrating that rIL-1 does not activate an inositol phospholipid-specific phospholipase C. [3H]Phosphorylethanolamine, but not [3H]phosphorylserine or [3H]phosphorylcholine, was maximally elevated at 1 min in mesangial cells incubated with rIL-1. Radioactivity incorporated into phosphatidylethanolamine but not phosphatidylcholine was also decreased in IL-1-stimulated mesangial cells compared with control at 1 min. These data suggest that rIL-1 activates a phospholipase C predominantly linked to phosphatidylethanolamine. In contrast to other mitogens, rIL-1 did not alter intracellular pH. Both 12-0-tetradecanoyl-phorbol-13-acetate, a homologue of 1,2-diacylglycerol, and phosphatidate but not phosphatidylcholine in the presence of 0.5% fetal bovine serum stimulated mesangial cell proliferation. rIL-1-induced cellular activation may be mediated, at least in part, by phospholipid-derived second messengers generated through novel pathways.

Authors

M Kester, M S Simonson, P Mené, J R Sedor

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 110 1
PDF 43 14
Scanned page 202 2
Citation downloads 50 0
Totals 405 17
Total Views 422
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts