Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interleukin 1 inhibits contraction of vascular smooth muscle.
D Beasley, … , R A Cohen, N G Levinsky
D Beasley, … , R A Cohen, N G Levinsky
Published January 1, 1989
Citation Information: J Clin Invest. 1989;83(1):331-335. https://doi.org/10.1172/JCI113879.
View: Text | PDF
Research Article

Interleukin 1 inhibits contraction of vascular smooth muscle.

  • Text
  • PDF
Abstract

Interleukin 1 has been implicated as a mediator of both systemic and local responses to infection and injury. Since systemic and local vasodilatation are hallmarks of sepsis and infection, we studied the direct effect of IL-1 on vascular contractility. We report here that human recombinant IL-1-beta potently inhibits the response of rat thoracic aorta to vasoconstrictor agents. Exposure of isolated rat aortic rings to IL-1 (20 ng/ml) for 1 h did not affect phenylephrine-induced contractions during the exposure period. However, when rings were retested 150-200 min after initiation of IL-1 exposure, contractions were markedly decreased. The cytokine had a similar effect in rings from which the endothelium was removed. Contractions caused by potassium depolarization also were depressed, indicating the effect of IL-1 is not specific to the alpha-adrenoceptor agonist. The inhibitory effect of IL-1 was concentration-dependent (0.2 to 20 ng/ml), and eliminated by pretreatment with cycloheximide (20 micrograms/ml). Indomethacin (10(-5) M) did not prevent the inhibition caused by IL-1. These studies identify IL-1 as a potent inhibitor of vascular contraction, via an endothelium-independent mechanism. Studies with inhibitors suggest that the action of IL-1 is independent of prostanoid synthesis, and may involve synthesis of protein.

Authors

D Beasley, R A Cohen, N G Levinsky

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 193 4
PDF 50 7
Scanned page 216 4
Citation downloads 79 0
Totals 538 15
Total Views 553
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts