Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113816

Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters.

R C Kao, N G Wehner, K M Skubitz, B H Gray, and J R Hoidal

Department of Microbiology, University of Minnesota, Minneapolis 55455.

Find articles by Kao, R. in: PubMed | Google Scholar

Department of Microbiology, University of Minnesota, Minneapolis 55455.

Find articles by Wehner, N. in: PubMed | Google Scholar

Department of Microbiology, University of Minnesota, Minneapolis 55455.

Find articles by Skubitz, K. in: PubMed | Google Scholar

Department of Microbiology, University of Minnesota, Minneapolis 55455.

Find articles by Gray, B. in: PubMed | Google Scholar

Department of Microbiology, University of Minnesota, Minneapolis 55455.

Find articles by Hoidal, J. in: PubMed | Google Scholar

Published December 1, 1988 - More info

Published in Volume 82, Issue 6 on December 1, 1988
J Clin Invest. 1988;82(6):1963–1973. https://doi.org/10.1172/JCI113816.
© 1988 The American Society for Clinical Investigation
Published December 1, 1988 - Version history
View PDF
Abstract

Studies were designed to explore the possibility that human polymorphonuclear leukocyte granule constituents in addition to elastase (HLE) had the potential to cause emphysema. A two-step purification of three serine proteinases was developed. Granule extract proteins were initially separated by dye-ligand affinity chromatography. Fractions eluted were divided into four pools. Hamsters were given a single intratracheal instillation of saline +/- 0.1 mg protein of each pool. While pool 2 contained HLE and cathepsin G, the most dramatic bullous emphysema developed in animals treated with pool 4. The esterase from pool 4, designated proteinase 3 (PR-3) was purified, characterized in vitro, and tested for its ability to cause emphysema. PR-3 is a neutral serine proteinase with isoenzyme forms. Its ability to degrade elastin at pH 6.5 is slightly greater than that of HLE, but it is less active than HLE at pH 7.4 or 8.9. PR-3 has weak activity against azocasein. Its ability to degrade hemoglobin is intermediate to that of HLE and cathepsin G at pH 7.4. PR-3 has no activity against chromogenic substrates specific for HLE or cathepsin G. Its pI is substantially less than HLE or cathepsin G. It is also immunologically distinct from HLE. It induces emphysema in hamsters commensurate with that of HLE. We conclude that PR-3 may be important in the pathogenesis of human emphysema.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1963
page 1963
icon of scanned page 1964
page 1964
icon of scanned page 1965
page 1965
icon of scanned page 1966
page 1966
icon of scanned page 1967
page 1967
icon of scanned page 1968
page 1968
icon of scanned page 1969
page 1969
icon of scanned page 1970
page 1970
icon of scanned page 1971
page 1971
icon of scanned page 1972
page 1972
icon of scanned page 1973
page 1973
Version history
  • Version 1 (December 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts