Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113760

Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers.

G Hecht, C Pothoulakis, J T LaMont, and J L Madara

Department of Pathology (Gastrointestinal Pathology), Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Hecht, G. in: PubMed | Google Scholar

Department of Pathology (Gastrointestinal Pathology), Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Pothoulakis, C. in: PubMed | Google Scholar

Department of Pathology (Gastrointestinal Pathology), Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by LaMont, J. in: PubMed | Google Scholar

Department of Pathology (Gastrointestinal Pathology), Brigham and Women's Hospital, Boston, Massachusetts 02115.

Find articles by Madara, J. in: PubMed | Google Scholar

Published November 1, 1988 - More info

Published in Volume 82, Issue 5 on November 1, 1988
J Clin Invest. 1988;82(5):1516–1524. https://doi.org/10.1172/JCI113760.
© 1988 The American Society for Clinical Investigation
Published November 1, 1988 - Version history
View PDF
Abstract

Toxin A of Clostridium difficile causes severe inflammatory enterocolitis in man and animals that appears to be mediated in part by acute inflammatory cells that migrate into the toxin A-exposed mucosa. To determine the direct effects of toxin A on intestinal epithelial permeability and structure in the absence of other modulating factors, we used cultured monolayers of a human intestinal epithelial cell line (T84). A toxin A concentration of 7 x 10(-1) micrograms/ml (3 x 10(-9) M) nearly abolished monolayer transepithelial resistance within 6-8 h. This marked permeability defect occurred while the monolayers were still confluent. Dual sodium-mannitol flux studies localized the permeability defect to the intercellular tight junction. Cytotoxicity assays and morphological evaluation using Nomarski optics and electron microscopy failed to demonstrate any evidence of cell damage at the time the maximum resistance response was observed. Fluorescent staining for F actin, however, revealed a marked decrease in fluorescent intensity in toxin-treated monolayers versus controls. These data show that toxin A can directly affect the barrier function of this model intestinal epithelium and initially does so by selectively enhancing tight junction permeability. Furthermore, cytoskeletal structure is markedly altered over the same time course, although the integrity of individual cells is maintained. Because the cytoskeleton of intestinal epithelial cells is known to be capable of regulating tight junction permeability, we speculate that the above effects of toxin A on epithelial barrier function result from alterations of the cytoskeleton.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1516
page 1516
icon of scanned page 1517
page 1517
icon of scanned page 1518
page 1518
icon of scanned page 1519
page 1519
icon of scanned page 1520
page 1520
icon of scanned page 1521
page 1521
icon of scanned page 1522
page 1522
icon of scanned page 1523
page 1523
icon of scanned page 1524
page 1524
Version history
  • Version 1 (November 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts