Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113745

Interaction of atriopeptin III and vasopressin on calcium kinetics and contraction of aortic smooth muscle cells.

H Meyer-Lehnert, C Caramelo, P Tsai, and R W Schrier

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Meyer-Lehnert, H. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Caramelo, C. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Tsai, P. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Schrier, R. in: PubMed | Google Scholar

Published October 1, 1988 - More info

Published in Volume 82, Issue 4 on October 1, 1988
J Clin Invest. 1988;82(4):1407–1414. https://doi.org/10.1172/JCI113745.
© 1988 The American Society for Clinical Investigation
Published October 1, 1988 - Version history
View PDF
Abstract

The cellular mechanism of the vasodilatory action of atriopeptin III (APIII) on vasopressin (AVP)-induced Ca2+ mobilization and cell shape change in cultured vascular smooth muscle cells (VSMC) was studied. APIII (10(-8) M) attenuated the increase of intracellular free Ca2+, [Ca2+]i, induced by 10(-8) M AVP (234.0 +/- 14.8 vs. 310.0 +/- 28.4 nM, P less than 0.01). Similar results were obtained in 45Ca2+ efflux experiments. APIII (10(-7) M), however, did not alter AVP-induced inositol trisphosphate (IP3) production, although the levels of inositol-1-phosphate were significantly reduced. The effect of APIII to block or attenuate AVP-induced Ca2+ mobilization was associated with an inhibition of AVP-stimulated cell shape change. The effect of atrial natriuretic factor (ANF) on cell shape, however, occurred at lower ANF concentrations than the effect on the Ca2+ mobilization. APIII stimulated production of cyclic guanosine monophosphate (cGMP) in VSMC. The effect of APIII on AVP-stimulated Ca2+ mobilization was partially mimicked by the stable nucleotide 8-bromo cGMP and was not affected by the soluble guanylate cyclase inhibitor, methylene blue (10(-4) M). These results suggest that APIII exerts its vasodilatory effect, in part, by interference with vasopressor-stimulated Ca2+ mobilization in vascular smooth muscle cells, perhaps by stimulating particulate guanylate cyclase and cGMP. However, an effect of ANF on the contractile mechanism at a site independent of Ca2+ release is also suggested by the present results.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1407
page 1407
icon of scanned page 1408
page 1408
icon of scanned page 1409
page 1409
icon of scanned page 1410
page 1410
icon of scanned page 1411
page 1411
icon of scanned page 1412
page 1412
icon of scanned page 1413
page 1413
icon of scanned page 1414
page 1414
Version history
  • Version 1 (October 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts