Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans.
R G Victor, … , S L Pryor, R L Nunnally
R G Victor, … , S L Pryor, R L Nunnally
Published October 1, 1988
Citation Information: J Clin Invest. 1988;82(4):1301-1305. https://doi.org/10.1172/JCI113730.
View: Text | PDF | Correction
Research Article

Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans.

  • Text
  • PDF
Abstract

We used phosphorus nuclear magnetic resonance spectroscopy (31P-NMR) to probe the cellular events in contracting muscle that initiate the reflex stimulation of sympathetic outflow during exercise. In conscious humans, we performed 31P-NMR on exercising forearm muscle and simultaneously recorded muscle sympathetic nerve activity (MSNA) with microelectrodes in the peroneal nerve to determine if the activation of MSNA is coupled to muscle pH, an index of glycolysis, or to the concentrations (II) of inorganic phosphate (Pi) and adenosine diphosphate (ADP) which are modulators of mitochondrial respiration. During both static and rhythmic handgrip, the onset of sympathetic activation in resting muscle coincided with the development of cellular acidification in active muscle. Furthermore, increases in MSNA were correlated closely with decreases in intracellular pH but dissociated from changes in phosphocreatine [( PCr]), [Pi], and [ADP]. The principal new conclusion is that activation of muscle sympathetic outflow during exercise in humans is coupled to the cellular accumulation of protons in contracting muscle.

Authors

R G Victor, L A Bertocci, S L Pryor, R L Nunnally

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 381 29
PDF 116 17
Scanned page 275 1
Citation downloads 68 0
Totals 840 47
Total Views 887
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts