Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113716

Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear leukocytes from patients with chronic granulomatous disease.

H D Gresham, J A McGarr, P G Shackelford, and E J Brown

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Gresham, H. in: PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by McGarr, J. in: PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Shackelford, P. in: PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Brown, E. in: PubMed | Google Scholar

Published October 1, 1988 - More info

Published in Volume 82, Issue 4 on October 1, 1988
J Clin Invest. 1988;82(4):1192–1201. https://doi.org/10.1172/JCI113716.
© 1988 The American Society for Clinical Investigation
Published October 1, 1988 - Version history
View PDF
Abstract

Human PMN and monocytes both possess a mechanism for amplifying Fc receptor-mediated phagocytic function, which is dependent on activation of the respiratory burst. The pathway for augmentation of phagocytosis requires superoxide anion, hydrogen peroxide, and lactoferrin and is independent of the hydrogen peroxide-MPO-halide system. In neither cell type is this mechanism induced upon exposure to the opsonized target. PMN require an additional signal for stimulation of the respiratory burst; this is not true of monocytes. On the other hand, monocytes require an exogenous source of lactoferrin in order to activate this pathway for enhanced ingestion. The dependence of this pathway for both PMN and monocytes on superoxide anion, hydrogen peroxide, and cell-bound lactoferrin is consistent with a role for locally generated reactive oxygen metabolites, possibly hydroxyl radicals, in phagocytosis amplification. Patients with chronic granulomatous disease, who are genetically deficient in the ability to activate the respiratory burst, are unable to amplify Fc receptor-mediated phagocytosis. Thus, these patients may have a previously unrecognized defect in the recruitment of phagocytic function at inflammatory sites.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1192
page 1192
icon of scanned page 1193
page 1193
icon of scanned page 1194
page 1194
icon of scanned page 1195
page 1195
icon of scanned page 1196
page 1196
icon of scanned page 1197
page 1197
icon of scanned page 1198
page 1198
icon of scanned page 1199
page 1199
icon of scanned page 1200
page 1200
icon of scanned page 1201
page 1201
Version history
  • Version 1 (October 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts