Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113700

Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut.

D Sorrentino, D Stump, B J Potter, R B Robinson, R White, C L Kiang, and P D Berk

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Sorrentino, D. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Stump, D. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Potter, B. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Robinson, R. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by White, R. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Kiang, C. in: PubMed | Google Scholar

Department of Medicine, Mount Sinai School of Medicine, New York 10029.

Find articles by Berk, P. in: PubMed | Google Scholar

Published September 1, 1988 - More info

Published in Volume 82, Issue 3 on September 1, 1988
J Clin Invest. 1988;82(3):928–935. https://doi.org/10.1172/JCI113700.
© 1988 The American Society for Clinical Investigation
Published September 1, 1988 - Version history
View PDF
Abstract

Uptake of [3H]oleate by canine or rat cardiac myocytes is saturable, displays the countertransport phenomenon, and is inhibited by phloretin and trypsin. Cardiac myocytes contain a basic (pI approximately 9.1) 40-kD plasma membrane fatty acid binding protein (FABPPM) analogous to those recently isolated from liver, adipose tissue, and gut, unrelated to the 12-14-kD cytosolic FABP in these same tissues. An antibody to rat liver FABPPM selectively inhibits specific uptake of [3H]oleate by rat heart myocytes at 37 degrees C, but has no influence on nonspecific [3H]oleate uptake at 4 degrees C or on specific uptake of [3H]glucose. Uptake of long-chain free fatty acids by cardiac muscle cells, liver, and adipose tissue and absorption by gut epithelial cells is a facilitated process mediated by identical or closely related plasma membrane FABPs.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 928
page 928
icon of scanned page 929
page 929
icon of scanned page 930
page 930
icon of scanned page 931
page 931
icon of scanned page 932
page 932
icon of scanned page 933
page 933
icon of scanned page 934
page 934
icon of scanned page 935
page 935
Version history
  • Version 1 (September 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts