Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113676

Plasma clearance of human extracellular-superoxide dismutase C in rabbits.

K Karlsson and S L Marklund

Department of Clinical Chemistry, Umeå University Hospital, Sweden.

Find articles by Karlsson, K. in: PubMed | Google Scholar

Department of Clinical Chemistry, Umeå University Hospital, Sweden.

Find articles by Marklund, S. in: PubMed | Google Scholar

Published September 1, 1988 - More info

Published in Volume 82, Issue 3 on September 1, 1988
J Clin Invest. 1988;82(3):762–766. https://doi.org/10.1172/JCI113676.
© 1988 The American Society for Clinical Investigation
Published September 1, 1988 - Version history
View PDF
Abstract

Extracellular-superoxide dismutase (EC-SOD) is heterogenous in the vasculature with regard to heparin affinity and can be separated into three fractions: A, without affinity; B, with weak affinity; and C, with relatively strong heparin affinity. The plasma clearance of intravenously injected 125I-labeled and unlabeled human EC-SOD C was studied in rabbits. About 90% of injected 125I-EC-SOD C was eliminated from the blood within 5-10 min. Injection of heparin after 10 or 20 min led to an immediate release of all sequestered 125I-EC-SOD C back to the blood plasma. Later injections of heparin led to diminished release, although release could still be demonstrated after 72 h. A half-time of approximately 10 h could be calculated for heparin-releasable 125I-EC-SOD C. Unlabeled EC-SOD C, determined as enzymic activity and with ELISA, was likewise sequestered and released to the same degree as 125I-labeled EC-SOD C by heparin as tested at 20 min and 5 h. The immediacy of the heparin-induced release indicates that the sequestered enzyme had been bound to endothelial cell surfaces. The length of the half-time suggests that the putative cell surface binding has a physiological function and is not primarily a step in enzyme degradation. The distribution of sequestered 125I-labeled EC-SOD C to different organs was determined at times between 10 min and 24 h. Of the organs, the liver contained the most 125I-EC-SOD C, followed by kidney, spleen, heart, and lung. At all investigated times, the content in the analyzed organs was nearly as large as the amount that could be promptly released to plasma by intravenous heparin. This indicates that almost all 125I-EC-SOD C in the organs was present on endothelial cell surfaces and was not bound by other tissue cell surfaces, or was present within the cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 762
page 762
icon of scanned page 763
page 763
icon of scanned page 764
page 764
icon of scanned page 765
page 765
icon of scanned page 766
page 766
Version history
  • Version 1 (September 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts