Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113560

In vivo administration of lymphocyte-specific monoclonal antibodies in nonhuman primates. IV. Cytotoxic effect of an anti-T11-gelonin immunotoxin.

K A Reimann, V S Goldmacher, J M Lambert, L V Chalifoux, S B Cook, S F Schlossman, and N L Letvin

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Reimann, K. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Goldmacher, V. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Lambert, J. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Chalifoux, L. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Cook, S. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Schlossman, S. in: PubMed | Google Scholar

Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772.

Find articles by Letvin, N. in: PubMed | Google Scholar

Published July 1, 1988 - More info

Published in Volume 82, Issue 1 on July 1, 1988
J Clin Invest. 1988;82(1):129–138. https://doi.org/10.1172/JCI113560.
© 1988 The American Society for Clinical Investigation
Published July 1, 1988 - Version history
View PDF
Abstract

The cytotoxic effect of a lymphocyte-specific immunotoxin formed by disulfide conjugation of an anti-T11 monoclonal antibody with the ribosome-inactivating protein gelonin was assessed in vitro on peripheral blood T cells and in vivo on splenic and lymph node T cells of macaque monkeys. This immunotoxin was cytotoxic to proliferating peripheral blood T cells in vitro as measured by both direct and indirect assays. Two sequential intravenous infusions into macaque monkeys achieved plasma concentrations of immunotoxin far in excess of those shown to be cytotoxic for cultured T cells and coated all T cells in lymph nodes and spleen with intact immunotoxin for four days. However, the cytotoxic effect of the immunotoxin on T cells in vivo was considerably less than that predicted by the in vitro studies. Further experiments suggested that the state of activation of the targeted T cell population in vivo, or the appearance of anti-immunotoxin antibodies, which occurred in all infused monkeys, might attenuate immunotoxin-mediated cell killing in vivo. These studies illustrate the significant differences between the action of immunotoxin conjugates in vitro, and those seen when these conjugates are utilized as therapeutic agents in vivo.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 129
page 129
icon of scanned page 130
page 130
icon of scanned page 131
page 131
icon of scanned page 132
page 132
icon of scanned page 133
page 133
icon of scanned page 134
page 134
icon of scanned page 135
page 135
icon of scanned page 136
page 136
icon of scanned page 137
page 137
icon of scanned page 138
page 138
Version history
  • Version 1 (July 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts