Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113547

Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3.

M E Rothenberg, W F Owen Jr, D S Silberstein, J Woods, R J Soberman, K F Austen, and R L Stevens

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Rothenberg, M. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Owen, W. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Silberstein, D. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Woods, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Soberman, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Austen, K. in: JCI | PubMed | Google Scholar

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Stevens, R. in: JCI | PubMed | Google Scholar

Published June 1, 1988 - More info

Published in Volume 81, Issue 6 on June 1, 1988
J Clin Invest. 1988;81(6):1986–1992. https://doi.org/10.1172/JCI113547.
© 1988 The American Society for Clinical Investigation
Published June 1, 1988 - Version history
View PDF
Abstract

Human eosinophils were cultured in the presence of recombinant human IL-3 for up to 14 d and their biochemical, functional, and density properties were assessed. After 3 d of culture in 10 pM IL-3, eosinophils had a viability of 70% compared with only 10% in enriched medium alone. Neither IL-1 alpha, IL-2, IL-4, tumor necrosis factor, basic fibroblast growth factor, nor platelet-derived growth factor maintained eosinophil viability. The 7- and 14-d survival of the cultured eosinophils was 55 and 53%, respectively. No other cell type, including neutrophils, was present after culture. After 7 d of culture, the normodense eosinophils were converted to hypodense cells as assessed by density centrifugation. Eosinophils exposed to 1,000 pM IL-3 for 30 min or cultured in 10 pM IL-3 for 7 d generated approximately threefold more leukotriene C4 (LTC4) in response to calcium ionophore than freshly isolated cells. Furthermore, whereas freshly isolated eosinophils killed only 14% of the antibody-coated Schistosoma mansoni larvae, these eosinophils killed 54% of the larvae when exposed to 100 pM IL-3. The enhanced helminth cytotoxicity was maintained for 7 d when eosinophils were cultured in the presence of both 10 pM IL-3 and 3T3 fibroblasts, but not when eosinophils were cultured in the presence of IL-3 alone. IL-3 thus maintains the viability of eosinophils in vitro, augments the calcium ionophore-induced generation of LTC4, enhances cytotoxicity against antibody-sensitized helminths, and induces the eosinophils to become hypodense cells. These phenotypic changes in the eosinophil may be advantageous to host defense against helminthic infections but may be disadvantageous in conditions such as allergic disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1986
page 1986
icon of scanned page 1987
page 1987
icon of scanned page 1988
page 1988
icon of scanned page 1989
page 1989
icon of scanned page 1990
page 1990
icon of scanned page 1991
page 1991
icon of scanned page 1992
page 1992
Version history
  • Version 1 (June 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts