Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113536

Bradykinin-activated membrane-associated phospholipase C in Madin-Darby canine kidney cells.

D Portilla, J Morrissey, and A R Morrison

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Portilla, D. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Morrissey, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Morrison, A. in: JCI | PubMed | Google Scholar

Published June 1, 1988 - More info

Published in Volume 81, Issue 6 on June 1, 1988
J Clin Invest. 1988;81(6):1896–1902. https://doi.org/10.1172/JCI113536.
© 1988 The American Society for Clinical Investigation
Published June 1, 1988 - Version history
View PDF
Abstract

Previous studies have demonstrated that bradykinin stimulates the rapid release of inositol 1,4,5 trisphosphate (IP3) from membrane phosphatidylinositol 4,5 bisphosphate (PIP2) in Madin-Darby canine kidney (MDCK) cells. Since current evidence would suggest that the activation of phospholipase C (PLC) is mediated through a guanine nucleotide-binding protein in receptor-mediated activation of PLC, we evaluated the role of guanine nucleotide proteins in receptor-mediated (bradykinin-stimulated) activation of PLC in MDCK cells. Bradykinin at 10(-7) M produced a marked increase in IP3 formation within 10 s increasing from a basal level of 46.2 to 686.6 pmol/mg cell protein a 15-fold increase. Pretreatment of MDCK cells in culture with 200 ng/ml of pertussis toxin for 4 h reduced the bradykinin-stimulated response to 205.8 pmol/mg protein. A 41-kD protein substrate in MDCK membranes was ADP ribosylated in vitro in the presence of pertussis toxin. The ADP ribosylation in vitro was inhibited by pretreatment of the cells in culture with pertussis toxin. Membranes from MDCK cells incubated in the presence of [3H]PIP2/phosphatidyl ethanolamine liposomes demonstrated hydrolysis of [3H]PIP2 with release of [3H]IP3 when GTP 100 microM or GTP gamma S 10 microM was added. Bradykinin 10(-7) M added with GTP 100 microM markedly increased the rate of hydrolysis within 10 s, thus demonstrating a similar time course of PLC activation as intact cells. These results demonstrate that bradykinin binds to its receptor and activates a membrane-associated PLC through a pertussis toxin-sensitive, guanine nucleotide protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1896
page 1896
icon of scanned page 1897
page 1897
icon of scanned page 1898
page 1898
icon of scanned page 1899
page 1899
icon of scanned page 1900
page 1900
icon of scanned page 1901
page 1901
icon of scanned page 1902
page 1902
Version history
  • Version 1 (June 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts