Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113530

Effect of age on myocardial adaptation to volume overload in the rat.

S Isoyama, W Grossman, and J Y Wei

Charles A. Dana Research Institute, Boston, Massachusetts 02215.

Find articles by Isoyama, S. in: JCI | PubMed | Google Scholar

Charles A. Dana Research Institute, Boston, Massachusetts 02215.

Find articles by Grossman, W. in: JCI | PubMed | Google Scholar

Charles A. Dana Research Institute, Boston, Massachusetts 02215.

Find articles by Wei, J. in: JCI | PubMed | Google Scholar

Published June 1, 1988 - More info

Published in Volume 81, Issue 6 on June 1, 1988
J Clin Invest. 1988;81(6):1850–1857. https://doi.org/10.1172/JCI113530.
© 1988 The American Society for Clinical Investigation
Published June 1, 1988 - Version history
View PDF
Abstract

To test the hypothesis that the capacity for left ventricular (LV) adaptation to volume overload might diminish with age, we examined the hemodynamics and degree of myocardial hypertrophy in response to aortic insufficiency in young adult (9 mo) and old (18 or 22 mo) Fischer rats. Before, immediately after, and at 2 and 4 wk after creating aortic insufficiency, LV and aortic pressures were measured using a catheterization technique. 4 wk after surgery, we measured aortic flow, and estimated the LV passive pressure-volume relationship and the degree of LV hypertrophy after killing. Immediately after the surgical creation of aortic insufficiency, both young and old rats showed similar elevation of LV end-diastolic pressure (from 4.8 +/- 0.6 to 12.0 +/- 1.5 mmHg in the young rats, P less than 0.01; from 4.9 +/- 0.4 to 11.0 +/- 0.7 mmHg in the old rats, P less than 0.01). In the young rats LV, end-diastolic pressure decreased to 8.0 +/- 1.0 and to 8.5 +/- 0.9 mmHg at 2 and 4 wk (P less than 0.05). In contrast, LV end-diastolic pressure at 2 (16.9 +/- 3.1 mmHg) and 4 wk (16.1 +/- 2.7 mmHg) in the old rats was even higher, compared with the values measured immediately after aortic insufficiency. At 4 wk, LV end-diastolic meridional wall stress (calculated from the in vivo LV end-diastolic pressure, and the pressure-volume relationship and muscle mass obtained after killing) was higher in the old rats than in the young rats. In the young rats, the diastolic pressure-volume relationship at 4 wk shifted to the right (P less than 0.01), and LV dry weight, LV dry weight/tibial length, and protein content of the LV myocardium increased by 26% (P less than 0.01), 24% (P less than 0.01), and 33% (P less than 0.01), respectively. However, old rats with aortic insufficiency did not show a significant change in the pressure-volume relationship, dry weight, or protein content at 4 wk. These results suggest that advanced age diminishes the capacity for LV hypertrophy in response to a volume overload, and this reduced LV hypertrophic response in the old rats resulted in persistent elevation of LV end-diastolic pressure and wall stress.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1850
page 1850
icon of scanned page 1851
page 1851
icon of scanned page 1852
page 1852
icon of scanned page 1853
page 1853
icon of scanned page 1854
page 1854
icon of scanned page 1855
page 1855
icon of scanned page 1856
page 1856
icon of scanned page 1857
page 1857
Version history
  • Version 1 (June 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts