Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired cardiac muscarinic receptor function in dogs with heart failure.
D E Vatner, … , S F Vatner, C J Homcy
D E Vatner, … , S F Vatner, C J Homcy
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):1836-1842. https://doi.org/10.1172/JCI113528.
View: Text | PDF
Research Article

Impaired cardiac muscarinic receptor function in dogs with heart failure.

  • Text
  • PDF
Abstract

Prior physiological studies have suggested that parasympathetic control is altered in heart failure. The goal of our studies was to investigate the influence of heart failure on the muscarinic receptor, and its coupling to adenylate cyclase. Ligand binding studies using [3H]quinuclidinyl benzilate and enriched left ventricular (LV) sarcolemma, demonstrated that muscarinic receptor density in heart failure declined 36% from a control of 5.6 +/- 0.6 pmol/mg, with no change in antagonist affinity. However, agonist competition studies with both carbachol and oxotremorine showed that it was a loss of high affinity agonist binding sites in the sarcolemma from failing LV that accounted for this difference. The functional efficacy of the muscarinic receptor was also examined. When 1 microM methacholine was added to 0.1 mM GTP and 0.1 mM isoproterenol, adenylate cyclase stimulated activity was inhibited by 15% in normal LV but only 5% in LV sarcolemma from animals with heart failure even when the reduced adenylate cyclase in these heart failure animals was taken into account. Even at 100-fold greater concentrations of methacholine, significantly less inhibition of adenylate cyclase activity was observed in LV failure as compared with normal LV sarcolemma. Levels of the GTP-inhibitory protein known to couple the muscarinic receptor to adenylate cyclase, as measured with pertussis toxin labeling, were not depressed in LV failure. Thus, the inhibitory pathway regulating LV adenylate cyclase activity is defective in heart failure. The decrease in muscarinic receptor density, and in particular the specific loss of the high affinity agonist binding component of this receptor population, appears to be the major factor underlying this abnormality.

Authors

D E Vatner, D L Lee, K R Schwarz, J P Longabaugh, A M Fujii, S F Vatner, C J Homcy

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 92 1
PDF 61 11
Figure 0 1
Scanned page 236 2
Citation downloads 52 0
Totals 441 15
Total Views 456
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts