Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of basic fibroblast growth factor on bone formation in vitro.
E Canalis, … , M Centrella, T McCarthy
E Canalis, … , M Centrella, T McCarthy
Published May 1, 1988
Citation Information: J Clin Invest. 1988;81(5):1572-1577. https://doi.org/10.1172/JCI113490.
View: Text | PDF
Research Article

Effects of basic fibroblast growth factor on bone formation in vitro.

  • Text
  • PDF
Abstract

Basic fibroblast growth factor (bFGF) was studied for its effects on bone formation in cultured rat calvariae. bFGF at 0.1-100 ng/ml stimulated [3H]thymidine incorporation into DNA by up to 4.4-fold. bFGF also increased the number of colcemid-induced metaphase arrested cells and the DNA content. Transient (24 h) treatment with bFGF enhanced [3H]-proline incorporation into collagen 24-48 h after the factor was removed; this effect was DNA synthesis dependent and blocked by hydroxyurea. The collagen stimulated by bFGF was type I, and this effect was observed primarily in the periosteum-free bone. In contrast, continuous treatment with bFGF for 24-96 h inhibited [3H]proline incorporation into type I collagen. bFGF did not alter collagen degradation. In conclusion, bFGF stimulates calvarial DNA synthesis, which causes an increased number of collagen-synthesizing cells, but bFGF has a direct inhibitory effect on collagen synthesis.

Authors

E Canalis, M Centrella, T McCarthy

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 348 6
PDF 51 8
Figure 0 2
Scanned page 211 0
Citation downloads 51 0
Totals 661 16
Total Views 677
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts