Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113465

Endocytotic uptake, processing, and retroendocytosis of human biosynthetic proinsulin by rat fibroblasts transfected with the human insulin receptor gene.

J R Levy, A Ullrich, and J M Olefsky

Department of Medicine, University of California, San Diego 92093.

Find articles by Levy, J. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093.

Find articles by Ullrich, A. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92093.

Find articles by Olefsky, J. in: PubMed | Google Scholar

Published May 1, 1988 - More info

Published in Volume 81, Issue 5 on May 1, 1988
J Clin Invest. 1988;81(5):1370–1377. https://doi.org/10.1172/JCI113465.
© 1988 The American Society for Clinical Investigation
Published May 1, 1988 - Version history
View PDF
Abstract

The cellular itinerary and processing of insulin and proinsulin were studied to elucidate possible mechanisms for the observed in vivo differences in the biologic half-lives of these two hormones. A rat fibroblast cell line transfected with a normal human insulin receptor gene was used. Due to gene amplification, the cells express large numbers of receptors and are ideal for studying a ligand, such as proinsulin, that has a low affinity for the insulin receptor. Competitive binding at 4 degrees C showed that the concentration of unlabeled insulin and proinsulin that is needed to displace 50% of tracer insulin or proinsulin was 0.85-0.95 nM and 140-150 nM, respectively. Binding to surface receptors and internalization occur at rates that are four to five times faster in cells incubated with insulin compared with proinsulin. Chloroquine led to an increase in cell-associated radioactivity of approximately 1.4-fold in cells incubated with insulin or proinsulin, but inhibited the appearance of degraded insulin by 54% and degraded proinsulin by only 10%. To study the fate of internalized ligand, cells were incubated with insulin and proinsulin until steady state binding occurred. Surface bound ligand was removed by an acid wash and the remaining cell-associated radioactivity represented internalized ligand. Cells were then reincubated in 37 degrees C buffer and the cell-associated radioactivity and radioactivity released into the medium were analyzed by TCA precipitation, Sephadex G-50, and HPLC. The results demonstrated that proinsulin more readily bypasses the intracellular degradative machinery and is therefore released intact from the cell via the retroendocytotic pathway. These results may help to explain the prolonged metabolic clearance rate and biologic responsiveness of proinsulin in vivo.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1370
page 1370
icon of scanned page 1371
page 1371
icon of scanned page 1372
page 1372
icon of scanned page 1373
page 1373
icon of scanned page 1374
page 1374
icon of scanned page 1375
page 1375
icon of scanned page 1376
page 1376
icon of scanned page 1377
page 1377
Version history
  • Version 1 (May 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts