Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro.
N K Cheung, … , M L Tykocinski, M E Medof
N K Cheung, … , M L Tykocinski, M E Medof
Published April 1, 1988
Citation Information: J Clin Invest. 1988;81(4):1122-1128. https://doi.org/10.1172/JCI113426.
View: Text | PDF
Research Article

Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro.

  • Text
  • PDF
Abstract

The disialoganglioside GD2 is expressed on a wide spectrum of human tumor types, including neuroblastomas and melanomas. Upon binding of 3F8, a murine monoclonal antibody (MAb) specific for GD2, neuroblastomas and some melanomas are sensitive to killing by human complement, whereas some melanomas are not. To investigate the mechanism underlying these differences in complement mediated cytotoxicity, complement-insensitive melanoma cell lines were compared with respect to expression of the decay-accelerating factor (DAF), a membrane regulatory protein that protects blood cells from autologous complement attack. While DAF was undetectable among neuroblastomas, it was present in complement-insensitive melanomas. When the function of DAF was blocked by anti-DAF MAb, C3 uptake and complement-mediated lysis of the insensitive melanoma lines were markedly enhanced. F(ab')2 fragments were as effective in enhancing lysis as intact anti-DAF MAb. The DAF-negative and DAF-positive melanoma cell lines were comparably resistant to passive lysis by cobra venom factor-treated serum. The data suggest that in some tumors, DAF activity accounts for their resistance to complement-mediated killing. The ability to render these cells complement-sensitive by blocking DAF function may have implications for immunotherapy.

Authors

N K Cheung, E I Walter, W H Smith-Mensah, W D Ratnoff, M L Tykocinski, M E Medof

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 234 7
PDF 47 13
Scanned page 245 1
Citation downloads 46 0
Totals 572 21
Total Views 593
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts