Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Toluene diisocyanate increases airway responsiveness to substance P and decreases airway neutral endopeptidase.
D Sheppard, J E Thompson, L Scypinski, D Dusser, J A Nadel, D B Borson
D Sheppard, J E Thompson, L Scypinski, D Dusser, J A Nadel, D B Borson
View: Text | PDF
Research Article

Toluene diisocyanate increases airway responsiveness to substance P and decreases airway neutral endopeptidase.

  • Text
  • PDF
Abstract

Substance P and related tachykinins contribute to the airway hyperresponsiveness caused by toluene diisocyanate (TDI) in guinea pigs. Neutral endopeptidase (NEP) is an important modulator of substance P-induced responses. To test the hypothesis that exposure to TDI would increase responsiveness to substance P by inhibiting activity of this enzyme, we determined the dose of substance P required to increase pulmonary resistance by 200% above baseline (PD200) before and after administration of the pharmacologic inhibitor phosphoramidon in guinea pigs studied 1 h after a 1-h exposure to air or 3 ppm TDI. TDI exposure increased responsiveness to substance P significantly. However, phosphoramidon caused a significantly greater leftward shift of the substance P dose-response curve in air-exposed animals than it did in TDI-exposed animals, so that after phosphoramidon, mean values of PD200 in animals exposed to air or TDI did not differ. Tracheal NEP activity was significantly less after exposure to TDI than after exposure to air, whereas activity in the esophagus was the same in both groups. These results suggest that TDI exposure increases the bronchoconstrictor responsiveness of guinea pigs to substance P, in large part through inhibition of airway NEP.

Authors

D Sheppard, J E Thompson, L Scypinski, D Dusser, J A Nadel, D B Borson

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 132 2
PDF 48 5
Scanned page 130 4
Citation downloads 53 0
Totals 363 11
Total Views 374
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts