Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). Relationships to phospholipid degradation and unesterified fatty acid accumulation.
M A Venkatachalam, Y J Patel, J I Kreisberg, J M Weinberg
M A Venkatachalam, Y J Patel, J I Kreisberg, J M Weinberg
View: Text | PDF
Research Article

Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). Relationships to phospholipid degradation and unesterified fatty acid accumulation.

  • Text
  • PDF
Abstract

This study related ATP levels with membrane damage, lipid abnormalities, and cell death in energy-depleted LLC-PK1 cells. Oxidative phosphorylation was inhibited by antimycin A, and glycolysis was regulated by graded glucose deprivation to achieve stepwise ATP depletion. Over a range of ATP levels down to approximately equal to 5% of normal, over 5 h, cells were altered only minimally, or injured reversibly. Such cells maintained mitochondrial potential, and retained more K+ than cells without an energy source. Over the same duration, cells without an energy source were lethally injured. Treatment with antimycin induced increments of triglycerides and decreases of phospholipids. With severe ATP depletion (approximately equal to 5-10% of normal after 5 h), decrease of phospholipids was marked. Cells in which ATP was not measurable (or was less than 5% of normal) showed comparable phospholipid declines but, in addition, showed massive and progressive increase of unesterified fatty acids. The results identified a low threshold of ATP, at best 5-10% of normal, which preserved viability in LLC-PK1 cells despite major loss of membrane phospholipids. This threshold also determined the ability of cells to maintain their normally low levels of unesterified fatty acids. Failure of energy-dependent mechanisms that normally metabolize unesterified fatty acids may be a correlate of the extent of energy depletion that determines lethal injury.

Authors

M A Venkatachalam, Y J Patel, J I Kreisberg, J M Weinberg

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts