Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113319

Biosynthesis of somatostatin in canine fundic D cells.

T Chiba, J Park, and T Yamada

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0362.

Find articles by Chiba, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0362.

Find articles by Park, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0362.

Find articles by Yamada, T. in: JCI | PubMed | Google Scholar

Published February 1, 1988 - More info

Published in Volume 81, Issue 2 on February 1, 1988
J Clin Invest. 1988;81(2):282–287. https://doi.org/10.1172/JCI113319.
© 1988 The American Society for Clinical Investigation
Published February 1, 1988 - Version history
View PDF
Abstract

The observation that virtually all of the somatostatin-like immunoreactivity in the stomach consists of somatostatin-14 (S14), to the exclusion of somatostatin-28 (S28), suggests a unique pattern of prosomatostatin posttranslational processing. In order to examine the mechanisms by which S14 is produced from its precursor in the stomach, we investigated the biosynthesis of somatostatin in isolated canine fundic D cells. D cells pulse-labeled with [35S]cysteine revealed a cycloheximide inhibitable time-dependent incorporation of radioactivity into S14. A small fraction of radioactivity was incorporated into S28 but not into larger precursors. However, when the cells were incubated with monensin (1 microM), incorporation of radioactivity into a presumed somatostatin precursor was noted. Upon transfer of [35S]cysteine prelabeled cells to radioactivity-free medium, no conversion of S28 to S14 could be detected and the decrease of labeled S14 in cells correlated with a complimentary increase in the culture medium. Exogenous somatostatin inhibited somatostatin biosynthesis in a fashion that could be blocked by pertussis toxin pretreatment. Stimulation of prelabeled D cells with tetradecanoyl phorbol 13-acetate (10(-7) M) or forskolin (10(-4) M) for 2 h resulted in release of 41 and 33% of the newly synthesized radioactive S14, respectively, while only 9 and 6% of the total cell content of radioimmunoassayable somatostatin was secreted. These data suggest that: (a) somatostatin is synthesized in fundic D cells primarily as S14, (b) S14 is produced by rapid processing of a larger precursor but there is little, if any, conversion of S28 to S14, (c) somatostatin biosynthesis is autoregulated, and (d) newly synthesized S14 is preferentially released from D cells in response to stimulation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 282
page 282
icon of scanned page 283
page 283
icon of scanned page 284
page 284
icon of scanned page 285
page 285
icon of scanned page 286
page 286
icon of scanned page 287
page 287
Version history
  • Version 1 (February 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts