Mammalian renal proximal tubules reabsorb large amounts of chloride. Mechanisms of the transcellular chloride transport are poorly understood. To determine whether KCl co-transport exists in the basolateral membrane of mammalian renal proximal tubule, isolated rabbit proximal straight tubules (S2 segment) were perfused in vitro, and intracellular activities of potassium and chloride (aKi, aCli) were measured by double-barreled ion-selective microelectrodes. aCli did not change when basolateral membrane voltage was altered by application of a direct current through perfusion pipette. aCli changes in response to bath chloride elimination were not affected by current application as well, indicating that the basolateral chloride transport is electroneutral. An increase in potassium concentration of the bath fluid from 5 to 20 mM reversibly increased aCli by 10 mM. This response of aCli to a change in the bath potassium concentration was also observed when luminal chloride was removed, or ambient sodium was totally removed. aKi significantly decreased by 5 mM when chloride was removed from the bath. These data demonstrate the existence of an electroneutral Na+-independent KCl co-transport in the basolateral membrane of the rabbit proximal tubule. Calculated electrochemical driving force was favorable for the movement of KCl from the cell to the peritubular fluid.
S Sasaki, K Ishibashi, N Yoshiyama, T Shiigai
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 127 | 3 |
49 | 5 | |
Scanned page | 191 | 2 |
Citation downloads | 54 | 0 |
Totals | 421 | 10 |
Total Views | 431 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.