Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro.
R W Whitcomb, … , W M Linehan, R A Knazek
R W Whitcomb, … , W M Linehan, R A Knazek
Published January 1, 1988
Citation Information: J Clin Invest. 1988;81(1):185-188. https://doi.org/10.1172/JCI113292.
View: Text | PDF
Research Article

Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro.

  • Text
  • PDF
Abstract

Adrenoleukodystrophy (ALD) and adrenomyeloneuropathy are inherited disorders in which long-chain, saturated fatty acids (LCFA) accumulate in various tissues. A mechanism by which LCFA cause the endocrine and neurological dysfunction characteristic of these diseases is proposed based on in vitro response of human adrenocortical cells to ACTH in the presence of various fatty acids. Human adrenocortical cells cultured in the presence of 5 microM hexacosanoic (C26:0) or lignoceric (C24:0) acids showed decreased basal and ACTH-stimulated cortisol release compared with cells cultured without exogenous fatty acids or in the presence of linoleic acid (C18:2). Measurement of fluorescence polarization demonstrates a significant increase in the membrane microviscosity of cells cultured in the presence of LCFA. It is hypothesized that cells exposed to LCFA have increased membrane microviscosity with a consequent decrease in their ability to respond to ACTH. This decrease in trophic support may contribute to the adrenal insufficiency and atrophy in patients with ALD.

Authors

R W Whitcomb, W M Linehan, R A Knazek

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 231 25
PDF 64 28
Scanned page 164 5
Citation downloads 57 0
Totals 516 58
Total Views 574
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts