Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113285

Experimental chemotherapy-induced skin necrosis in swine. Mechanistic studies of anthracycline antibiotic toxicity and protection with a radical dimer compound.

S D Averbuch, M Boldt, G Gaudiano, J B Stern, T H Koch, and N R Bachur

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Averbuch, S. in: PubMed | Google Scholar

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Boldt, M. in: PubMed | Google Scholar

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Gaudiano, G. in: PubMed | Google Scholar

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Stern, J. in: PubMed | Google Scholar

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Koch, T. in: PubMed | Google Scholar

Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland 20892.

Find articles by Bachur, N. in: PubMed | Google Scholar

Published January 1, 1988 - More info

Published in Volume 81, Issue 1 on January 1, 1988
J Clin Invest. 1988;81(1):142–148. https://doi.org/10.1172/JCI113285.
© 1988 The American Society for Clinical Investigation
Published January 1, 1988 - Version history
View PDF
Abstract

The reactivity of antitumor anthracycline and mitomycin C antibiotics with the oxomorpholinyl radical dimers, bi(3,5,5-trimethyl-2-oxomorpholin-3-yl) (TM3) and bi(3,5-dimethyl-5-hydroxymethyl-2-oxomorpholin-3-yl) (DHM3), was studied in vitro. The oxomorpholinyl radical reduced daunorubicin to a quinone methide intermediate that reacted with solvent to form 7-deoxydaunorubicinone. The solvolysis reaction followed first order kinetics, and the reactivity rate constants (k2) measured for seven anthracycline analogues ranged from 2 X 10(-2) s-1 to 8.0 X 10(-4) s-1. The chemical reactivity of each anthracycline quinone methide correlated with the total skin toxicity caused by the respective parent anthracycline following injection into swine skin. Microscopic examination of experimental lesions in swine skin resemble those observed in humans after inadvertant chemotherapy extravasation. Hydrocortisone sodium succinate was not effective for the treatment of doxorubicin-induced skin necrosis, whereas DHM3 was effective for the treatment of skin necrosis caused by all seven anthracyclines and by the quinone containing antibiotic, mitomycin C.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 142
page 142
icon of scanned page 143
page 143
icon of scanned page 144
page 144
icon of scanned page 145
page 145
icon of scanned page 146
page 146
icon of scanned page 147
page 147
icon of scanned page 148
page 148
Version history
  • Version 1 (January 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts