Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Doxorubicin-induced inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures. Relevance to imparied wound healing.
T Sasaki, … , K C Holeyfield, J Uitto
T Sasaki, … , K C Holeyfield, J Uitto
Published December 1, 1987
Citation Information: J Clin Invest. 1987;80(6):1735-1741. https://doi.org/10.1172/JCI113265.
View: Text | PDF
Research Article

Doxorubicin-induced inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures. Relevance to imparied wound healing.

  • Text
  • PDF
Abstract

Previous clinical and experimental observations have indicated that wound healing is impaired as a result of treatment with doxorubicin, a chemotherapeutic agent. In this study, the effects of doxorubicin were examined in human skin fibroblast cultures with respect to collagen production and fibroblast proliferation. The results indicated that the synthesis of hydroxyproline as a marker of collagen production was markedly reduced, with an approximate concentration of inhibitor yielding 50% inhibition of 1 microM. This inhibition could be explained, in part, by generalized inhibition of total protein synthesis, but in addition, there was a significant inhibition of prolyl hydroxylation during collagen biosynthesis, as indicated by a reduction in the ratio of [3H]hydroxyproline/([3H]hydroxyproline + [3H]proline). The latter effect was shown to result from inhibition of prolyl hydroxylase by doxorubicin. As a consequence of reduced prolyl hydroxylation, the stability of newly synthesized procollagen triple helix was shown to be compromised. At the same time, doxorubicin significantly reduced fibroblast proliferation in vitro, as determined by [3H]thymidine incorporation. Thus, reduced collagen production and inhibition of fibroblast proliferation may explain the reduced wound healing in patients undergoing treatment with doxorubicin.

Authors

T Sasaki, K C Holeyfield, J Uitto

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts