Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Polyamines mediate uncontrolled calcium entry and cell damage in rat heart in the calcium paradox.
H Koenig, … , J J Trout, C Y Lu
H Koenig, … , J J Trout, C Y Lu
Published November 1, 1987
Citation Information: J Clin Invest. 1987;80(5):1322-1331. https://doi.org/10.1172/JCI113209.
View: Text | PDF
Research Article

Polyamines mediate uncontrolled calcium entry and cell damage in rat heart in the calcium paradox.

  • Text
  • PDF
Abstract

Brief perfusion of heart with calcium-free medium renders myocardial cells calcium-sensitive so that readmission of calcium results in uncontrolled Ca2+ entry and acute massive cell injury (calcium paradox). We investigated the hypothesis that polyamines may be involved in the mediation of abnormal Ca2+ influx and cell damage in the calcium paradox. The isolated perfused rat heart was used for these studies. Calcium-free perfusion promptly (less than 5 min) decreased the levels of polyamines and the activity of their rate-regulating synthetic enzyme, ornithine decarboxylase (ODC), and calcium reperfusion abruptly (less than 15-180 s) increased these components. alpha-Difluoromethylornithine (DFMO), a specific suicide inhibitor of ODC, suppressed the calcium reperfusion-induced increase in polyamines and the concomitant increase in myocardial cellular 45Ca influx, loss of contractility, release of cytosolic enzymes, myoglobin, and protein, and structural lesions. Putrescine, the product of ODC activity, nullified DFMO inhibition and restored the calcium reperfusion-induced increment in polyamines and the full expression of the calcium paradox. Putrescine itself enhanced the reperfusion-evoked release of myoglobin and protein in the absence of DFMO. Hypothermia blocked the changes in heart ODC and polyamines induced by calcium-free perfusion and calcium reperfusion and prevented the calcium paradox. These results indicate that rapid Ca2+-directed changes in ODC activity and polyamine levels are essential for triggering excessive transsarcolemmal transport of Ca2+ and explosive myocardial cell injury in the calcium paradox.

Authors

H Koenig, A D Goldstone, J J Trout, C Y Lu

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 144 6
PDF 69 8
Scanned page 422 0
Citation downloads 70 0
Totals 705 14
Total Views 719
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts