Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of endotoxin-induced priming of human neutrophils by lipid X and 3-Aza-lipid X.
R L Danner, … , K A Joiner, J E Parrillo
R L Danner, … , K A Joiner, J E Parrillo
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):605-612. https://doi.org/10.1172/JCI113112.
View: Text | PDF
Research Article

Inhibition of endotoxin-induced priming of human neutrophils by lipid X and 3-Aza-lipid X.

  • Text
  • PDF
Abstract

Lipid X, a precursor of lipid A (the toxic moiety of endotoxin), has been shown to protect animals from the lethal effects of endotoxin challenge. We investigated the mechanism of action of lipid X and 3-aza-lipid X, a diamino-analogue, in vitro, using the ability of lipopolysaccharide (LPS) to prime neutrophils for an enhanced release of toxic oxygen radicals. Lipid X and 3-aza-lipid X inhibited LPS-induced neutrophil priming in a concentration-dependent manner. At high concentrations, 3-aza-lipid X was a partial agonist of priming. Lipid X was found to inhibit LPS-induced priming by directly interacting with the neutrophil in contrast to polymyxin B, which neutralized LPS by binding to it. Increasing concentrations of lipid X shifted the LPS dose response curve of neutrophils rightward but did not prevent maximum priming at higher LPS concentrations, a finding consistent with competitive inhibition. These results suggest that lipid X, a compound structurally related to lipid A, may block neutrophil priming by competing with LPS for cellular binding sites. Lipid X appears to have a novel mechanism of inhibiting LPS effect and may have efficacy in the treatment of gram-negative sepsis.

Authors

R L Danner, K A Joiner, J E Parrillo

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 123 1
PDF 40 11
Scanned page 267 0
Citation downloads 48 0
Totals 478 12
Total Views 490
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts