Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113026

Genetic analysis of a kindred with familial hypobetalipoproteinemia. Evidence for two separate gene defects: one associated with an abnormal apolipoprotein B species, apolipoprotein B-37; and a second associated with low plasma concentrations of apolipoprotein B-100.

S G Young, S J Bertics, L K Curtiss, B W Dubois, and J L Witztum

Find articles by Young, S. in: PubMed | Google Scholar

Find articles by Bertics, S. in: PubMed | Google Scholar

Find articles by Curtiss, L. in: PubMed | Google Scholar

Find articles by Dubois, B. in: PubMed | Google Scholar

Find articles by Witztum, J. in: PubMed | Google Scholar

Published June 1, 1987 - More info

Published in Volume 79, Issue 6 on June 1, 1987
J Clin Invest. 1987;79(6):1842–1851. https://doi.org/10.1172/JCI113026.
© 1987 The American Society for Clinical Investigation
Published June 1, 1987 - Version history
View PDF
Abstract

In 1979 Steinberg and colleagues recognized a unique kindred with normotriglyceridemic hypobetalipoproteinemia (1979. J. Clin. Invest. 64:292-301). We have undertaken an intensive reexamination of this kindred and have studied 41 family members in three generations. In this family we document the presence of two distinct apo B alleles associated with low plasma concentrations of apolipoprotein (apo) B and low density lipoprotein (LDL) cholesterol and we trace the inheritance of these two alleles over three generations. One of the alleles resulted in the production of an abnormal, truncated apo B species, apo B-37. The other apo B allele was associated with reduced plasma concentrations of the normal apo B species, apo B-100. H.J.B., the proband, and two of his siblings had both abnormal apo B alleles and were therefore compound heterozygotes for familial hypobetalipoproteinemia. Their average LDL-cholesterol level was 6 +/- 9 mg/dl. All of the offspring of the three compound heterozygotes had hypobetalipoproteinemia, and each had evidence of only one of the abnormal apo B alleles. In the entire kindred, we identified six heterozygotes for familial hypobetalipoproteinemia who had only the abnormal apo B-37 allele and their average LDL cholesterol was 31 +/- 12 mg/dl. We identified 10 heterozygotes who had only the allele for reduced plasma concentrations of apo B-100 and their LDL cholesterol level was 31 +/- 15 mg/dl. Unaffected family members (n = 22) had LDL cholesterol levels of 110 +/- 27 mg/dl. This report describes the first kindred in which two distinct abnormal apo B alleles have been identified, both of which are associated with familial hypobetalipoproteinemia.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1842
page 1842
icon of scanned page 1843
page 1843
icon of scanned page 1844
page 1844
icon of scanned page 1845
page 1845
icon of scanned page 1846
page 1846
icon of scanned page 1847
page 1847
icon of scanned page 1848
page 1848
icon of scanned page 1849
page 1849
icon of scanned page 1850
page 1850
icon of scanned page 1851
page 1851
Version history
  • Version 1 (June 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts