Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion
Peter T. Clayton, Simon Eaton, Albert Aynsley-Green, Mark Edginton, Khalid Hussain, Steve Krywawych, Vipan Datta, Helga E.M. Malingré, Ruud Berger, Inge E.T. van den Berg
Peter T. Clayton, Simon Eaton, Albert Aynsley-Green, Mark Edginton, Khalid Hussain, Steve Krywawych, Vipan Datta, Helga E.M. Malingré, Ruud Berger, Inge E.T. van den Berg
View: Text | PDF
Article

Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion

  • Text
  • PDF
Abstract

A female infant of nonconsanguineous Indian parents presented at 4 months with a hypoglycemic convulsion. Further episodes of hypoketotic hypoglycemia were associated with inappropriately elevated plasma insulin concentrations. However, unlike other children with hyperinsulinism, this patient had a persistently elevated blood spot hydroxybutyrylcarnitine concentration when fed, as well as when fasted. Measurement of the activity of L-3-hydroxyacyl-CoA dehydrogenase in cultured skin fibroblasts with acetoacetyl-CoA substrate showed reduced activity. In fibroblast mitochondria, the activity was less than 5% that of controls. Sequencing of the short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) genomic DNA from the fibroblasts showed a homozygous mutation (C773T) changing proline to leucine at amino acid 258. Analysis of blood from the parents showed they were heterozygous for this mutation. Western blot studies showed undetectable levels of immunoreactive SCHAD protein in the child’s fibroblasts. Expression studies showed that the P258L enzyme had no catalytic activity. We conclude that C773T is a disease-causing SCHAD mutation. This is the first defect in fatty acid β-oxidation that has been associated with hyperinsulinism and raises interesting questions about the ways in which changes in fatty acid and ketone body metabolism modulate insulin secretion by the β cell. The patient’s hyperinsulinism was easily controlled with diazoxide and chlorothiazide.

Authors

Peter T. Clayton, Simon Eaton, Albert Aynsley-Green, Mark Edginton, Khalid Hussain, Steve Krywawych, Vipan Datta, Helga E.M. Malingré, Ruud Berger, Inge E.T. van den Berg

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Restriction fragment length analysis of DNA fragments containing nt 773 ...
Restriction fragment length analysis of DNA fragments containing nt 773 of the SCHAD coding sequence. DNA from FS, her parents, and controls was amplified using primers for exon 7 (Table 2). The PCR product was analyzed on a 2% agarose gel, either untreated (lane 1) or after exposure to ApaI for 2 hours (lanes 2–5). The C773T mutation abrogates an ApaI restriction site present in the normal sequence. ApaI digestion of the DNA fragment from controls yields two bands of 121 and 171 nt (asterisk). Exposure of the mutated sequence to ApaI yields a single band of 292 nt (arrow). Lane 1, patient DNA fragment (untreated); lane 2, DNA fragment of the father after ApaI treatment; lane 3, DNA fragment of the mother after ApaI treatment; lane 4, DNA fragment of the patient treated with ApaI; lane 5, DNA fragment of a control treated with ApaI. The pattern of the DNA fragments of the parents reveals the presence of both the normal and the mutated sequence.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts