Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans.
R G Victor, … , D R Seals, A L Mark
R G Victor, … , D R Seals, A L Mark
Published February 1, 1987
Citation Information: J Clin Invest. 1987;79(2):508-516. https://doi.org/10.1172/JCI112841.
View: Text | PDF
Research Article

Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans.

  • Text
  • PDF
Abstract

We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in the leg during arm exercise in conscious humans to test the concept that central command and muscle afferent reflexes produce mass sympathetic discharge at the onset of exercise. Nonischemic rhythmic handgrip and mild arm cycling produced graded increases in heart rate and arterial pressure but did not increase MSNA, whereas ischemic handgrip and moderate arm cycling dramatically increased MSNA. There was a slow onset and offset of the MSNA responses, which suggested metaboreceptor mediation. When forearm ischemia was continued after ischemic handgrip, MSNA remained elevated (muscle chemoreflex stimulation) but heart rate returned to control (elimination of central command). The major new conclusions are that: the onset of dynamic exercise does not produce mass, uniform sympathetic discharge in humans, and muscle chemoreflexes and central command appear to produce differential effects on sympathetic and parasympathetic responses.

Authors

R G Victor, D R Seals, A L Mark

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts