We have found that canine and rat hepatocytes convert (125I)iodoTyr10-glucagon to a peptide metabolite lacking the NH2-terminal three residues of the hormone. The peptide is released into the cell incubation medium and its formation is unaffected by a variety of lysosomotropic or other agents. Use of specific radioimmunoassays and gel filtration demonstrated in both normal subjects and in chronic renal failure patients a plasma peptide having the properties of the hormone fragment identified by cell studies. Studies of the dog revealed a positive gradient of the fragment across the liver and no differential gradient of the fragment and glucagon across the kidney. We conclude that the glucagon fragment arises from the cell-mediated processing of the hormone on a superficial aspect of the hepatocyte, the glucagon fragment identified during experiments in vitro represents the cognate of a peptide formed during the hepatic metabolism of glucagon in vivo, and measurement of the fragment by COOH-terminal radioimmunoassays could lead to an understimulation of hepatic glucagon extraction.
W A Hagopian, H S Tager
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 92 | 0 |
43 | 11 | |
Scanned page | 331 | 4 |
Citation downloads | 51 | 0 |
Totals | 517 | 15 |
Total Views | 532 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.