Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cleavage of protein S by a platelet membrane protease.
C A Mitchell, H H Salem
C A Mitchell, H H Salem
View: Text | PDF
Research Article

Cleavage of protein S by a platelet membrane protease.

  • Text
  • PDF
Abstract

Protein S is a vitamin K-dependent glycoprotein cofactor to the serine protease, activated protein C. In this study we demonstrate that 125I-protein S bound to unstimulated platelets in a time- and calcium-dependent saturable reaction. Half-maximal binding occurred at a protein S concentration of 10 nM, with approximately 1,100 binding sites per platelet. The binding of protein S to platelets was followed by rapid cleavage of the protein mediated by a protease confined to the platelet membrane. The membrane protease was Ca++-dependent, inhibited by high concentrations of diisopropyl fluorophosphate, but was resistant to a variety of other protease inhibitors. Functional studies demonstrated that the cleavage of protein S was associated with complete loss of cofactor anticoagulant activity. We conclude that protein S binds to platelets and is inactivated by a novel Ca++-dependent membrane protease. This may represent a physiological reaction that regulates the activity of protein S.

Authors

C A Mitchell, H H Salem

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 141 10
PDF 71 7
Scanned page 217 3
Citation downloads 85 0
Totals 514 20
Total Views 534
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts