The chemotactic activity of human C5a des Arg is enhanced significantly by an anionic polypeptide (cochemotaxin) in normal human serum and plasma. We have found that the cochemotaxin attaches to the oligosaccharide chain of native C5a des Arg to form a complex with potent chemotactic activity for human polymorphonuclear leukocytes. Although capable of enhancing the chemotactic activity of native C5a des Arg, the cochemotaxin had no effect on the chemotactic activity of either deglycosylated C5a des Arg, native C5a, or N-formyl-methionyl-leucyl-phenylalanine. Of the known components of the oligosaccharide chain, only sialic acid prevented enhancement by the cochemotaxin of the chemotactic activity exhibited by native C5a des Arg. Sialic acid also prevented the formation of C5a des Arg-cochemotaxin complexes, detected by acid polyacrylamide gel electrophoresis, molecular sieve chromatography on polyacrylamide gels, and sucrose density gradient ultracentrifugation.
H D Perez, D E Chenoweth, I M Goldstein
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 106 | 2 |
37 | 9 | |
Scanned page | 231 | 2 |
Citation downloads | 43 | 0 |
Totals | 417 | 13 |
Total Views | 430 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.