Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment
Uma Malhotra, … , Lawrence Corey, M. Juliana McElrath
Uma Malhotra, … , Lawrence Corey, M. Juliana McElrath
Published February 15, 2001
Citation Information: J Clin Invest. 2001;107(4):505-517. https://doi.org/10.1172/JCI11275.
View: Text | PDF
Article

Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment

  • Text
  • PDF
Abstract

HIV-1–infected patients treated early with combination antiretrovirals respond favorably, but not all maintain viral suppression and improved HIV-specific Th function. To understand if genetic factors contribute to this variation, we prospectively evaluated over 18 months 21 early-treated patients stratified by alleles of class II haplotypes. All seven subjects with the DRB1*13-DQB1*06 haplotype, but only 21% of other subjects, maintained virus suppression at every posttreatment measurement. Following HIV-1 p24 antigen stimulation, PBMCs from patients with this haplotype demonstrated higher mean lymphoproliferation and IFN-γ secretion than did cells from patients with other haplotypes. Two DRB1*13-restricted Gag epitope regions were identified, a promiscuous one that bound its putative restriction element with nanomolar affinity, and another that mapped to a highly conserved region. These findings suggest that class II molecules, particularly the DRB1*13 haplotype, have an important impact on virologic and immunologic responses. The advantage of the haplotype may relate to selection of key HIV-1 Th1 epitopes in highly conserved regions with avid binding to class II molecules. Eliciting responses to the promiscuous epitope region may be beneficial in vaccine strategies.

Authors

Uma Malhotra, Sarah Holte, Sujay Dutta, M. Michelle Berrey, Elizabeth Delpit, David M. Koelle, Alessandro Sette, Lawrence Corey, M. Juliana McElrath

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
(a) Gag region aa 251–270 (TNNPPIPVGEIYKRWIILGL, Gag 26) containing two ...
(a) Gag region aa 251–270 (TNNPPIPVGEIYKRWIILGL, Gag 26) containing two DRB1*13–restricted epitopes binds with high affinity to DRB1*1302. The bars represent the binding capacity (IC50 nM) of the peptide for common DRB1, DRB3, DRB4, and DRB5 alleles. (b) Contribution of the responses to epitope regions Gag 26 and Gag 30 in comparison with the total response to all epitopes in HIV-1 p24 in four early-infected subjects. Cells from HIV-1 p24–stimulated cell lines were screened in an ELISPOT assay with four pools of 25 15-mer peptides. The sum of the SFCs in these wells represents the total activity detected to all epitopes in HIV-1 p24. Specific activity against 15-mers corresponding to Gag 26 (aa 251–265, aa 255–269) and Gag 30 (aa 291–305) was determined using a peptide matrix. SFCs are expressed per 100,000 input cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts