Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment
Uma Malhotra, … , Lawrence Corey, M. Juliana McElrath
Uma Malhotra, … , Lawrence Corey, M. Juliana McElrath
Published February 15, 2001
Citation Information: J Clin Invest. 2001;107(4):505-517. https://doi.org/10.1172/JCI11275.
View: Text | PDF
Article

Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment

  • Text
  • PDF
Abstract

HIV-1–infected patients treated early with combination antiretrovirals respond favorably, but not all maintain viral suppression and improved HIV-specific Th function. To understand if genetic factors contribute to this variation, we prospectively evaluated over 18 months 21 early-treated patients stratified by alleles of class II haplotypes. All seven subjects with the DRB1*13-DQB1*06 haplotype, but only 21% of other subjects, maintained virus suppression at every posttreatment measurement. Following HIV-1 p24 antigen stimulation, PBMCs from patients with this haplotype demonstrated higher mean lymphoproliferation and IFN-γ secretion than did cells from patients with other haplotypes. Two DRB1*13-restricted Gag epitope regions were identified, a promiscuous one that bound its putative restriction element with nanomolar affinity, and another that mapped to a highly conserved region. These findings suggest that class II molecules, particularly the DRB1*13 haplotype, have an important impact on virologic and immunologic responses. The advantage of the haplotype may relate to selection of key HIV-1 Th1 epitopes in highly conserved regions with avid binding to class II molecules. Eliciting responses to the promiscuous epitope region may be beneficial in vaccine strategies.

Authors

Uma Malhotra, Sarah Holte, Sujay Dutta, M. Michelle Berrey, Elizabeth Delpit, David M. Koelle, Alessandro Sette, Lawrence Corey, M. Juliana McElrath

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Kaplan-Meier curves display the probability of maintaining plasma viremi...
Kaplan-Meier curves display the probability of maintaining plasma viremia at less than 50 copies/ml once viral suppression is achieved. Breakthrough viremia is the end point. Patients are stratified by the presence or absence of the DRB1*13-DQB1*06 haplotype.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts