Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo.
H N Ginsberg, … , R Norum, W V Brown
H N Ginsberg, … , R Norum, W V Brown
Published November 1, 1986
Citation Information: J Clin Invest. 1986;78(5):1287-1295. https://doi.org/10.1172/JCI112713.
View: Text | PDF
Research Article

Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo.

  • Text
  • PDF
Abstract

Previous data suggest that apolipoprotein (apo) CIII may inhibit both triglyceride hydrolysis by lipoprotein lipase (LPL) and apo E-mediated uptake of triglyceride-rich lipoproteins by the liver. We studied apo B metabolism in very low density (VLDL), intermediate density (IDL), and low density lipoproteins (LDL) in two sisters with apo CIII-apo AI deficiency. The subjects had reduced levels of VLDL triglyceride, normal LDL cholesterol, and near absence of high density lipoprotein (HDL) cholesterol. Compartmental analysis of the kinetics of apo B metabolism after injection of 125I-VLDL and 131I-LDL revealed fractional catabolic rates (FCR) for VLDL apo B that were six to seven times faster than normal. Simultaneous injection of [3H]glycerol demonstrated rapid catabolism of VLDL triglyceride. VLDL apo B was rapidly and efficiently converted to IDL and LDL. The FCR for LDL apo B was normal. In vitro experiments indicated that, although sera from the apo CIII-apo-AI deficient patients were able to normally activate purified LPL, increasing volumes of these sera did not result in the progressive inhibition of LPL activity demonstrable with normal sera. Addition of purified apo CIII to the deficient sera resulted in 20-50% reductions in maximal LPL activity compared with levels of activity attained with the same volumes of the native, deficient sera. These in vitro studies, together with the in vivo results, indicate that in normal subjects apo CIII can inhibit the catabolism of triglyceride-rich lipoproteins by lipoprotein lipase.

Authors

H N Ginsberg, N A Le, I J Goldberg, J C Gibson, A Rubinstein, P Wang-Iverson, R Norum, W V Brown

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 467 13
PDF 60 26
Scanned page 398 3
Citation downloads 76 0
Totals 1,001 42
Total Views 1,043
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts