Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112697

Parvalbumin is reduced in the peripheral nerves of diabetic rats.

T Endo and T Onaya

Find articles by Endo, T. in: JCI | PubMed | Google Scholar

Find articles by Onaya, T. in: JCI | PubMed | Google Scholar

Published November 1, 1986 - More info

Published in Volume 78, Issue 5 on November 1, 1986
J Clin Invest. 1986;78(5):1161–1164. https://doi.org/10.1172/JCI112697.
© 1986 The American Society for Clinical Investigation
Published November 1, 1986 - Version history
View PDF
Abstract

Parvalbumin (PA), one of the Ca2+-binding neuronal marker proteins, has been revealed to exist in the myelinated axons of the posterior root of the spinal cord and the peripheral nerve of rats. To investigate the role of PA for the genesis of diabetic neuropathy, the levels of PA in the sciatic nerve of normal and streptozotocin-induced diabetic rats were measured by radioimmunoassay (RIA) for PA. The immunohistochemical distribution of PA in the sciatic nerve from both groups was also studied. The RIA for PA revealed that the levels of PA in the sciatic nerve of diabetic rats were significantly decreased when compared with those of normal rats. However, the contents of S-100 protein, another type of Ca2+-binding glial marker protein, did not show any significant difference in the sciatic nerve from both groups. Immunohistochemically, the amount of PA containing myelinated axons of the diabetic nerve was markedly decreased when compared with nondiabetic subjects. These results suggest that the decreased level of PA in the peripheral nerve might contribute to the genesis of diabetic neuropathy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1161
page 1161
icon of scanned page 1162
page 1162
icon of scanned page 1163
page 1163
icon of scanned page 1164
page 1164
Version history
  • Version 1 (November 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts