Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Circulatory heat sources for canine respiratory heat exchange.
J Solway, A R Leff, I Dreshaj, N M Munoz, E P Ingenito, D Michaels, R H Ingram Jr, J M Drazen
J Solway, A R Leff, I Dreshaj, N M Munoz, E P Ingenito, D Michaels, R H Ingram Jr, J M Drazen
View: Text | PDF
Research Article

Circulatory heat sources for canine respiratory heat exchange.

  • Text
  • PDF
Abstract

We assessed the roles of the pulmonary and bronchial circulations as potential heat sources to the pulmonary airways during respiratory heat loss, by observing the changes in airstream temperature that accompanied temporary occlusion of the pulmonary or bronchial circulations. Baseline end-expiratory and end-inspiratory airstream temperatures were 35.4 +/- 0.2 degrees C (SEM) and 30.9 +/- 0.3 degrees C, respectively, among all trials. With occlusion of the lower lobe pulmonary arteries for 3 min ipsilateral end-expiratory and end-inspiratory airstream temperatures fell by 2.8 +/- 0.2 and 1.1 +/- 0.2 degrees C, respectively, during hyperpnea with room temperature air, and by 3.5 +/- 0.5 and 1.8 +/- 0.2 degrees C, respectively, during hyperpnea with frigid air. In marked contrast, interruption of the bronchial circulation for 3 min had no effect on airstream temperatures. These data indicate that under these conditions, the pulmonary circulation, but not the bronchial circulation, serves as an important local heat source for respiratory heat exchange within the pulmonary airways.

Authors

J Solway, A R Leff, I Dreshaj, N M Munoz, E P Ingenito, D Michaels, R H Ingram Jr, J M Drazen

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 138 6
PDF 63 4
Scanned page 154 1
Citation downloads 68 0
Totals 423 11
Total Views 434
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts