Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112633

Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in cerebrotendinous xanthomatosis.

S Skrede, I Björkhem, E A Kvittingen, M S Buchmann, S O Lie, C East, and S Grundy

Find articles by Skrede, S. in: PubMed | Google Scholar

Find articles by Björkhem, I. in: PubMed | Google Scholar

Find articles by Kvittingen, E. in: PubMed | Google Scholar

Find articles by Buchmann, M. in: PubMed | Google Scholar

Find articles by Lie, S. in: PubMed | Google Scholar

Find articles by East, C. in: PubMed | Google Scholar

Find articles by Grundy, S. in: PubMed | Google Scholar

Published September 1, 1986 - More info

Published in Volume 78, Issue 3 on September 1, 1986
J Clin Invest. 1986;78(3):729–735. https://doi.org/10.1172/JCI112633.
© 1986 The American Society for Clinical Investigation
Published September 1, 1986 - Version history
View PDF
Abstract

26-Hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol and other C27-steroids was demonstrated in cultured skin fibroblasts from healthy individuals. Activities in skin fibroblasts were approximately 5-10% of those previously found in human liver homogenates, and were inhibited by CO. The apparent Km was lowest for 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (1.3 mumol/liter) and highest for 5-cholestene-3 beta, 7 alpha-diol (12 mumol/liter). The rate of 26-hydroxylation was highest with 7 alpha-hydroxy-4-cholesten-3-one. These characteristics are similar to those of hepatic mitochondrial C27-steroid 26-hydroxylase. In skin fibroblasts from three patients with cerebrotendinous xanthomatosis (CTX), 26-hydroxylation of C27-steroids proceeded at a rate of only 0.2-2.5% of healthy controls. No accumulation of endogenous 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol could be demonstrated in these cells, and the lowered formation of radioactive, 26-hydroxylated products could not be explained by dilution of the labeled exogenous substrate. The present results add strong evidence to the concept that the primary metabolic defect in CTX is a deficiency of C27-steroid 26-hydroxylase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 729
page 729
icon of scanned page 730
page 730
icon of scanned page 731
page 731
icon of scanned page 732
page 732
icon of scanned page 733
page 733
icon of scanned page 734
page 734
icon of scanned page 735
page 735
Version history
  • Version 1 (September 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts