Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Transepithelial water flow regulates apical membrane retrieval in antidiuretic hormone-stimulated toad urinary bladder.
H W Harris Jr, … , J B Wade, J S Handler
H W Harris Jr, … , J B Wade, J S Handler
Published September 1, 1986
Citation Information: J Clin Invest. 1986;78(3):703-712. https://doi.org/10.1172/JCI112630.
View: Text | PDF
Research Article

Transepithelial water flow regulates apical membrane retrieval in antidiuretic hormone-stimulated toad urinary bladder.

  • Text
  • PDF
Abstract

Antidiuretic hormone (ADH) increases the osmotic water permeability (Posm) of toad urinary bladder. This increase is believed to be produced by fusion of intracellular vesicles called aggrephores with the granular cell apical plasma membrane. Aggrephores contain intramembrane particle aggregates postulated to be water channels. ADH-stimulated Posm is decreased by osmotic gradient exposure, which is termed flux inhibition. We studied flux inhibition by exposing ADH-stimulated bladders to various osmotic gradients. Osmotic water flow was initially proportional to the applied osmotic gradient, but Posm decreased with time. Ultrastructural and quantitative studies of endocytosis demonstrate that apical membrane retrieval was a direct function of the transepithelial osmotic gradient. Posm remained unchanged when apical membrane retrieval was blocked by incubation of bladders at 2 degrees C, or under low water-flow conditions. These effects were reversed by increases in temperature or the applied osmotic gradient. We conclude that apical membrane retrieval causes the phenomenon of flux inhibition.

Authors

H W Harris Jr, J B Wade, J S Handler

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 99 3
PDF 32 10
Scanned page 379 1
Citation downloads 53 0
Totals 563 14
Total Views 577
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts