Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Myeloperoxidase as an effective inhibitor of hydroxyl radical production. Implications for the oxidative reactions of neutrophils.
C C Winterbourn
C C Winterbourn
Published August 1, 1986
Citation Information: J Clin Invest. 1986;78(2):545-550. https://doi.org/10.1172/JCI112607.
View: Text | PDF
Research Article

Myeloperoxidase as an effective inhibitor of hydroxyl radical production. Implications for the oxidative reactions of neutrophils.

  • Text
  • PDF
Abstract

Hydroxyl radicals have been generated from hydrogen peroxide and superoxide (produced with xanthine oxidase), and an iron (EDTA) catalyst, and detected with deoxyribose, or in some cases with benzoate or alpha-keto-gamma-methiolbutyric acid. Purified myeloperoxidase, and neutrophils stimulated with fMet-Leu-Phe and cytochalasin B, strongly inhibited this hydroxyl radical production in a concentration-dependent manner. Supernatants from stimulated cells also inhibited, and inhibition by cells or supernatant was prevented by azide. There was much less inhibition by myeloperoxidase-deficient neutrophils. Inhibition thus was due to myeloperoxidase released by the cells. With neutrophils stimulated with phorbol myristate acetate, which release very little myeloperoxidase, hydroxyl radical production was enhanced due to the additional superoxide produced by the cells. It is concluded that under conditions where neutrophils release myeloperoxidase as well as superoxide and hydrogen peroxide, breakdown of hydrogen peroxide by myeloperoxidase would make conditions unfavorable for hydroxyl radical production.

Authors

C C Winterbourn

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts