Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system.
S L Weinberg, … , G Burckhardt, F A Wilson
S L Weinberg, … , G Burckhardt, F A Wilson
Published July 1, 1986
Citation Information: J Clin Invest. 1986;78(1):44-50. https://doi.org/10.1172/JCI112571.
View: Text | PDF
Research Article

Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system.

  • Text
  • PDF
Abstract

The transport of bile acid was studied in basolateral membrane vesicles isolated from rat small intestine. Taurocholate transport into an osmotically reactive intravesicular space was Na+ independent. The uptake of taurocholate in jejunal and ileal vesicles preloaded with sulfate was stimulated with respect to uptake in unpreloaded vesicles. Glycocholate inhibited the transstimulation of taurocholate uptake by sulfate. Sulfate and taurocholate uptake in ileal vesicles preloaded with bicarbonate was stimulated with respect to uptake in unpreloaded vesicles. Taurocholate inhibited the transstimulation of sulfate uptake by bicarbonate. When ileal vesicles were loaded with p-aminohippurate, an early transstimulation of taurocholate was found that exceeded equilibrium uptake, was insensitive to a K+ diffusion potential, and was cis-inhibited by taurocholate, glycocholate, pyruvate, p-aminohippurate, probenecid, chloride, sulfate, and bicarbonate. These data indicate the presence of an anion exchanger in intestinal basolateral membrane vesicles that may be involved in the exit of bile acids from the enterocyte.

Authors

S L Weinberg, G Burckhardt, F A Wilson

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 109 3
PDF 57 6
Scanned page 241 1
Citation downloads 55 0
Totals 462 10
Total Views 472
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts