Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock.
C Natanson, … , J J Conklin, J E Parrillo
C Natanson, … , J J Conklin, J E Parrillo
Published July 1, 1986
Citation Information: J Clin Invest. 1986;78(1):259-270. https://doi.org/10.1172/JCI112559.
View: Text | PDF
Research Article

Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock.

  • Text
  • PDF
Abstract

A canine sepsis model that simulates the human cardiovascular response to septic shock was produced in 10 conscious unsedated dogs by implanting an Escherichia coli-infected clot into the peritoneum, resulting in bacteremia. By employing serial, simultaneous measurements of radionuclide scan-determined left ventricular (LV) ejection fraction (EF) and thermodilution cardiac index (CI), the end-diastolic volume index (EDVI) was calculated (EDVI = stroke volume index divided by EF). By using three different methods of quantifying serial ventricular performance (EF, shifts in the Starling ventricular function curve using EDVI vs. stroke work index, and the ventricular function curve response to volume infusion), this study provides evidence (P less than 0.01) that septic shock produces a profound, but reversible, decrease in systolic ventricular performance. This decreased performance was not seen in controls and was associated with ventricular dilatation (P less than 0.01); the latter response was dependent on an adequate volume infusion. Further studies of EDVI and pulmonary capillary wedge pressure during diastole revealed a significant, though reversible, shift (P less than 0.001) in the diastolic volume/pressure (or compliance) relationship during septic shock.

Authors

C Natanson, M P Fink, H K Ballantyne, T J MacVittie, J J Conklin, J E Parrillo

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts